

Magma chamber dynamics prior to the 1400 BP eruption of Rabaul, Papua New Guinea

Gareth N. Fabbro, Caroline Bouvet de la Maisonneuve

Earth Observatory of Singapore, Nanyang Technological University, Singapore

IUGG General Assembly, June 22–July 2, 2015

ELE DOO

Volcanism at Rabaul is due to subduction at the New Britain Trench

2 1 SQC

Volcanic history of Rabaul

1994 –	Current phase of activity
\sim 750 years BP	Oldest dated post-caldera rocks
$1,376\pm34$ years BP	"1400 BP" Ignimbrite
\sim 7,000 years BP	Raluan Ignimbrite
1,200–7ka	Pre-caldera

After Johnson et al. (2010)

Introduction oo whole rock chemistry Mineral, melt inclusion and matrix glass chemistry Mixing recorded in the matrix glass Conclusions oo oo

1400 BP magma plots along Rabaul trend

1400 BP: Our data; all other eruptions: Heming and Carmichael (1973), Wood et al. (1995), Patia (2004), Cunningham et al. (2009)

< (**1**] →

ELE DOC

Introduction oo whole rock chemistry Mineral, melt inclusion and matrix glass chemistry Mixing recorded in the matrix glass Conclusions oo oo

1400 BP magma plots along Rabaul trend

1400 BP: Our data; all other eruptions: Heming and Carmichael (1973), Wood et al. (1995), Patia (2004), Cunningham et al. (2009)

The 1400 BP magma appears homogeneous

There are dark, less-evolved blebs at top of the ignimbrite A recharge magma injected into base of chamber shortly before eruption?

E SQC

Introduction Whole rock chemistry Mineral, melt inclusion and matrix glass chemistry Mixing recorded in the matrix glass Conclusions o

No sign of recharge in mineral chemistry

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Only one population of melt inclusions...

< 🗇 >

Only one population of melt inclusions...

... but matrix glass shows greater spread—mixing

ELE DQC

Interaction with remnant Raluan magma?

< ≧ > < ≧ > .
 IUGG, June 30, 2015

Interaction with remnant Raluan magma?

No! Matrix glasses have high incompatible trace element concentrations (Ba, Zr, Hf, Rb, La)

1 = 900

EL OQO

1400BP Glass

× Melt inclusions

Post-caldera

▶ < ≣ IUGG, June 30, 2015

-

2 1 SQC

Post-caldera recharge has ${\sim}50\,\text{wt}\%~\text{SiO}_2$

< ≥ > < ≥ > ...
 IUGG, June 30, 2015

2 1 SQC

1400BP Glass

+ Matrix glass

× Melt inclusions

Whole Rock

Post 1994

- Post-caldera
- 1400BP
- Raluan
- Pre-caldera
- Unknown

Post-caldera recharge has ${\sim}50\,\text{wt}\%~\text{SiO}_2$

1400 BP recharge magma has ${\sim}57\text{--}60\,\text{wt}\%~\text{SiO}_2$

< ≥ > < ≥ > ...
 IUGG, June 30, 2015

ELE DOG

H400BP Glass
Matrix glass
Melt inclusions
Host 1994
Post-caldera
1400BP
Raluan
Pre-caldera
Unknown

Post-caldera recharge has ${\sim}50\,\text{wt}\%~\text{SiO}_2$

1400 BP recharge magma has ${\sim}57\text{--}60\,\text{wt\%}$ SiO_2

Possible interpretations:

- 1. More evolved recharge magma causes a more evolved magma reservoir to form
- The presence of a more evolved magma reservoir prevents basaltic recharge from entering the shallow system

ELE DOG

Conclusions

- 1. The 1400 BP eruption did not remobilise Raluan magma
- 2. The 1400 BP magma chamber was recharged with a more evolved magma to that which is currently being input into the plumbing system
- 3. This implies the plumbing system changed after the 1400 BP eruption

EL OQO

Conclusions

- 1. The 1400 BP eruption did not remobilise Raluan magma
- 2. The 1400 BP magma chamber was recharged with a more evolved magma to that which is currently being input into the plumbing system
- 3. This implies the plumbing system changed after the 1400 BP eruption

Thank you!

Questions? Email: gfabbro@ntu.edu.sg

EL OQO

212 DQC

• • • • • • • • • • • • • •