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1. Introduction

Caldera volcanoes commonly show cycles, with repeated ignimbrite eruptions interspersed

with long periods of minor activity. The caldera-forming magma bodies must develop

during these periods of minor activity. Calderas can also have multiple vents, which may

tap different melt bodies. To understand the behaviour of silicic calderas, we must ensure

our sampling is representative both in time and in space. Rabaul is an ideal location to

study these variations, as it has had at least five caldera-forming eruptions in the last 20 ky

and has multiple vent locations.

2. Geological Setting
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Figure 1: Rabaul is part of the
New Britain Arc, where the
Solomon Sea Plate is subduc-
ted beneath the South Bis-
mark Plate.

3. Volcanic history of Rabaul
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Figure 2: Geological map of Rabaul, modified from Nairn et al. (1989). Dates from Nairn
et al. (1995) and McKee & Duncan (2016).

I Several overlapping calderas make up the Rabaul Caldera Complex (RCC). Eruptions

from within the RCC are mostly dacitic.

I To the north and east lies a zone of five dominantly mafic stratocones, the Watom–

Turagunan Zone (WTZ).

I Directly north of the RCC lies the submarine Tavui Caldera. Products from Tavui range

from basaltic andesite to rhyolite.

I Historical activity has taken place at several locations within the most recent caldera.

The most recent period of activity started in 1994 with simultaneous eruptions from

Vulcan and Tavurvur, on opposite sides of the caldera.

We have focused on activity during the Late Pleistocene–Holocene, a period that includes

the most recent complete caldera cycle, from the 10.5-ka Vunabugbug Ignimbrite until the

1.4-ka Rabaul Pyroclastics. Between these two caldera collapses lie the Talwat and Talili

subgroups, a sequence of at least 11 explosive eruptions. These include both basaltic scoria

fall deposits and dacitic fall, flow and surge deposits.
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Figure 3: View of the volcanoes of the Rabaul Caldera Complex and the Watom–Turagunan Zone, taken from the Rabaul Volcano Observatory (RVO, see Figure 2 for colour scheme and location), looking south. Vulcan, Tavurvur, Sulphur Creek and Rabalanakaia (hidden behind
Palangiangia in this photo) have all been active in the last ∼250 years. Kabiu, Palangiangia and Turagunan have all been active in the last 4.2 ky, but with the possible exception of a lava flow from Turagunan, have not erupted since the Rabaul Pyroclastics eruption about 1.4 ka.

4. The stratigraphy of the Rabaul Pyroclastics
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Figure 4: Stratigraphic variations in the chemistry and petrology of the Rabaul Pyroclastics. Locations are shown in Figure 2.

I There are two juvenile components in the Rabaul Pyroclastics: dark (<5%) and white

pumice (>95%).

I The white pumice is dacitic, wile the dark pumice tends to be more andesitic.

I Towards the top of the normal ignimbrite the two magma types become more mingled:

the dark pumice is found as thin streaks in the white pumice, and the composition of

the glass in the white pumice at the top of the ignimbrite shows a larger range than

any of the other samples.

I There is only one dominant phenocryst population, as shown by mineral and melt

inclusion compositions.

I The dark pumice represents an almost aphyric, andesitic recharge magma injected

shortly before eruption.

5. Pre-eruptive magma storage conditions
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Figure 5: Volatile contents of melt in-
clusions from the Rabaul Pyroclastics.
Isobars calculated for a rhyolite at
930◦C using VOLATILECALC (Newman
& Lowenstern, 2002). The blue shaded
region is the range of storage pressures
estimated for the post-Rabaul Pyro-
clastics eruptions by Bouvet de Maison-
neuve et al. (2015).
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Figure 6: Equilibrium phase assemblages
calculated for the Rabaul Pyroclastics
dacite using Rhyolite-MELTS (Gualda et
al., 2012; Gualda & Ghiorso, 2015). The
blue shaded region is the range of stor-
age pressures and temperatures estim-
ated for the recent, post-Rabaul Pyro-
clastics eruptions by Bouvet de Maison-
neuve et al. (2015).

I Rabaul Pyroclastics dacite was stored at ∼100–200 MPa (3.8–7.6 km) and ∼900–

930◦C, as shown by both MELTS modelling and melt inclusion volatile contents.

I The present-day magma reservoir is at a similar depth, as shown by: deformation (top

of the reservoir 1.9–3 km; Ronchin et al., 2013), gravity (top of the reservoir >1.8 km;

McKee et al., 1989), seismic tomography (3–5 km; Finlayson et al., 2003, and melt

inclusion volatile content (1.9–7.6 km; 50–200 MPa; Bouvet de Maisonneuve et al.,

2015).

I Deformation data and the simultaneous eruption of the same magma from both Vulcan

and Tavurvur shows that the present-day magma reservoir extends laterally across much

of the Rabaul Pyroclastics caldera.

6. Variations in the magmatic plumbing systems
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Figure 7: Composition of Rabaul magmas. Fractional crystallisation path modelled us-
ing mass balance for major elements, and partition coefficients from the GERM Partition
Coefficient Database (https://earthref.org/KDD/) for trace elements.

Variations in space

I Tavui magmas fall on a different fractional crystallisation trend, due to the presence of

amphibole (no amphibole is found in RCC and WTZ magmas), suggesting that they

do not share a magma reservoir. Tavui magmas also have lower K2O and incompatible

trace element concentrations. WTZ and RCC magmas fall on the same fractional

crystallisation trend, but dacite is restricted to the RCC.

Variations in time

I The post-Rabaul Pyroclastics magmas fall on a linear trend that cuts across the frac-

tional crystallisation trend (Figure 7). Basaltic enclaves are also common. This demon-

strates that basaltic recharge is an important process in the present-day magma reservoir

under the RCC.

I The dark pumice in the Rabaul Pyroclastics shows that mafic recharge also occurred

prior to that eruption. However, both the dark and light pumice fall on the fractional

crystallisation trend—the recharge must be andesitic (SiO2 & 57%).

I The presence of a more developed reservoir prior to the Rabaul Pyroclastics prevented

basaltic recharge from entering the shallow system. After eruption, basalt can now

enter the shallow system again.

I The Talili eruptions also fall on the fractional crystallisation trend, suggesting that a

large silicic reservoir existed under the RCC since at least 4.2 ka.
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