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The Philippine Island Arc has a large number of volcanoeswith diversemorphologies, making it an ideal location
to study the factors controlling the morphology and spatial distribution of island arc volcanoes. We have identi-
fied 731 volcanic edifices using the SRTM 30 m digital elevation model, and computed their quantitative mor-
phology using the MORVOLC algorithm. Hierarchical classification by principal component (PC) analysis
distinguishes four volcano types: smallflat cones, small steep cones, large cones, andmassifs, withmean volumes
of 0.2 km3 (<6.2 km3), 0.4 km3 (<9 km3), 29 km3 (0.15–178 km3), 267 km3 (76–675 km3), mean heights of
125 m (16–721 m), 260 m (53–971 m), 842 m (59–2313 m), 1533 m (1012–2175 m), and mean slopes of 13°
(3–21°), 22° (14–37°), 15° (3–28°), 15° (11–22°), respectively. This classification is based mainly on their size
and irregularity (PC1) and steepness (mean slope and height/basal width ratio; PC2), and to a lesser extent on
the size of the summit region and edifice truncation (PC3) and edifice elongation (PC4). Thesemorphological vol-
cano classes represent stages along an evolutionary trend. The small flat cones aremostlymonogenetic, whereas
the small steep cone class represents an early growth stage. Some can develop into large polygenetic coneswhile
a few can further grow laterally intomassifs, both of which are preferentially found on thickened crust. There is a
trend towardsmore silicic compositions from small to large cones, perhaps due to larger edifice loads preventing
mafic dykes from reaching the surface. The distribution and alignment of the edificeswithin volcanicfields seems
to be influenced by both regional and local stress fields and pre-existing structures.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

The evolution of the shape and size of a volcanic edifice depends on
theprevailing constructive (i.e., eruption, intrusion, and deposition) and
destructive (i.e., deformation and erosion) processes (e.g., McGuire,
1996; Tibaldi et al., 2008; Grosse et al., 2012; Thouret et al., 2014;
Paguican and Bursik, 2016). Volcano morphology is a reflection of fac-
tors including age, growth stage, composition, vent position and migra-
tion, eruption rate, degree of erosion, deformation, and ultimately
underlying constraints including magma flux and tectonic setting
(Grosse et al., 2009). Thus, the quantification of volcano morphology
(i.e., morphometry) and the resulting classifications can provide clues
to the processes that interact during the growth of volcanoes and the
factors that control them.
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The Philippine archipelago is in an ideal tectonic setting for volca-
nism and earthquakes (Philippine Institute of Volcanology and
Seismology, 2008), and contains one of the greatest concentrations of
volcanoes on Earth. We have compiled a new database comprising
over 700 volcanic edifices. Analysing themorphometry of the identified
volcanoes at different inferred stages of growth, we suggest a growth
pattern and evolutionary trend.We compare themorphology of the ed-
ifices with their geochemical composition and spatial distribution to in-
vestigate the influence of the regional stress field and active tectonic
faults. Understanding the morphological changes associated with the
stages of volcano growth can help in the initial assessment of volcanic
hazards, which is useful in volcanic regions with limited resources.

2. The Philippine island arc

2.1. Geological setting

ThePhilippinearchipelago(Fig.1) isacompositeterranewithcontinen-
tal, oceanic, island arc, and ophiolitic affinities (e.g., Barrier et al., 1991;
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Structuralmap of the Philippineswith locations of the 731 analysed volcanic edifices. Lineswith black triangles are active subduction zones, whereas thosewith white triangles are
active collision fronts. Also shown are the major strike-slip faults that accommodate stress not accommodated by the subduction zones: the Philippine Fault Zone, Verde Fault, Legazpi
Lineament, and Cotabato Fault.
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Aurelio, 2000), and comprises two distinct geologic entities: the Palawan
microcontinental block and the Philippine mobile belt (e.g., Gervasio,
1967; Yumul et al., 2005). Stress–strain relationships caused by the
interaction of threemajor plates—the Sundaland, Philippine Sea and, to a
certain extent, Indo-Australian plates—manifest in both the regional and
local setting of the archipelago. The surrounding subduction systems
2

accommodatemost of the stresses generatedwithin the island arc system.
Excess stress caused by the oblique convergence is takenupby the left-lat-
eral Philippine Fault Zone and regional faults including the Legazpi
Lineament in southeast Luzon,which acts as a transfer fault connecting the
Philippine Fault with the Philippine Trench (Fig. 1; Armada et al., 2012;
Hsu et al., 2016).
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Opposing subduction zones control Philippine tectonics: theManila,
Negros, Sulu, andCotabatotrenchesonthewesthaveeastwardvergence,
whereas the Philippine Sea Plate on the east subductswestward under-
neath the Philippine archipelago along the Philippine and East Luzon
trenches (Fig. 1; Barrier et al., 1991; Aurelio, 2000). This unique tectonic
setting makes the Philippines ideal for volcano formation. Moreover,
this tectonic settingmay control volcano edifice growth, as seen, for ex-
ample, at Iriga (Paguican et al., 2012) and at other volcanoes in southern
Luzon (Lagmay et al., 2000; Pasquarè and Tibaldi, 2003).

2.2. Philippine volcanoes

A list of 24 active and several potentially active volcanoes in the Phil-
ippines is available from the Philippine Institute of Volcanology and
Seismology (2008). In the literature, Philippine volcanoes are divided
into five volcanic arcs along the major subduction zones bounding the
archipelago (Fig. 1; e.g., Aurelio and Pena, 2002). Volcanoes in the
Luzon, Negros, Sulu–Zamboanga, West Mindanao, and Central Minda-
nao volcanic arcs are related to the subduction of Sundaland marginal
basins (e.g., the South China, Sulu, and Celebes seas) along the Manila,
Negros, Sulu, and Cotabato trenches, respectively. This subduction
began during the Oligocene and continued until the early Miocene.
When Palawan collided with Mindoro at ∼9 to 8 Ma, it locked the con-
vergence on the western side of the Philippines and subduction flipped
to the east. Here, the Philippine Sea Plate has been subducted under-
neath the Philippine archipelago along the Philippine Trench since 5
Ma (Barrier et al., 1991).

From north to south, Batanes (also called Babuyan),West Luzon (re-
ferred to as the Bataan arc front to the west and Bataan back arc to the
east), Macolod Corridor, and South Luzon (also called Mindoro by
Castillo and Newhall, 2004) comprise the Luzon Volcanic Arc. The
West Luzon and South Luzon segments have K-Ar dates of 1.7–0.1 Ma
(Defant et al., 1990; Yumul et al., 2000b). The Macolod Corridor seg-
ment is a 40 km wide, northeast–southwest-trending area containing
∼200monogenetic volcanoes generated by counter-clockwise block ro-
tation in southwestern Luzon (Calibo et al., 2009). The rotation is linked
to the opposing motion of the subducting South China Sea under the
Manila Trench on the west and the strike-slip Philippine Fault on the
east coupled with shearing from the Verde Fault (Fig. 1). This block ro-
tation resulted in localized extension along the sides of the blocks that
led to partial melting of the crust (Galgana et al., 2007).

The East Philippine Volcanic Arc runs from Bicol to eastern Minda-
nao, which we segment into the Labo Volcanic Field and the Bicol and
East Visayas volcanic regions (e.g., Andal et al., 2005). TheNegros Volca-
nic Arc consists of four volcanoes on the island of Negros. The Sulu–
Zamboanga Volcanic Arc is defined by fields of small monogenetic vol-
canoes along the boundary between the Sulu and Celebes seas, and is
thought to be in its solfataric stage (Sajona et al., 1996). The Pliocene–
Quaternary Zamboanga Volcanic Field is located in the southeastern
portion of the Zamboanga Peninsula, and continues to the southwest
as a set of small volcanic islands in Basilan, with its northern boundary
near the trench axis. It is separated from theWest and CentralMindanao
volcanic fields by the Cotabato Fault. TheWestMindanao Volcanic Arc is
composed of stratovolcanoes and the volcanic fields of Makaturing,
Lanao, and Upi (Pubellier et al., 1991). The Central Mindanao Volcanic
Arc includes the stratovolcanoes of the North and South Mindanao vol-
canic regions and the Maramag Volcanic Field. It forms the most exten-
sive region of active volcanoes in the Philippines (Sajona et al., 1993).
The regional tectonic setting and seismic data suggest that the Neo-
gene–Quaternary volcanic centres along this arc occur ∼150–200 km
above a westward-dipping Wadati–Benioff zone, and may be due to
subduction along the Philippine trench (Corpuz, 1992); however, sev-
eral later seismic (e.g., Besana et al., 1997; Pubellier et al., 1991) and pet-
rological (e.g., Sajona et al., 1994) studies have suggested that volcanism
in this area is associated with remnants of the Molucca Sea plate
subducted under Mindanao.
3

3. Methodology

3.1. Database of Philippine volcanoes

We used the 30-m resolution Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM) as an input for generating to-
pographical data including slope, slope orientation, and shaded re-
lief maps with varying sun azimuths and elevation angles in RSI
ENVI. Additional open source data such as river and road systems
were also used to identify volcanoes (http://philgis.org/). Rivers
are useful because on conical morphological features such as
volcanoes, they are usually organized in a radial pattern, and road
networks are often constructed along volcano bases. We systemati-
cally mapped local lineaments and major faults described by
Barrier et al. (1991) and Aurelio (2000) on volcano edifices or within
the vicinity of volcanic fields. Conical topographic features (an iden-
tifiable broad base that tapers into a peak ormore complex top) were
then interpreted to be volcanoes. Their bases were drawn along
breaks in slope, guided by river systems and road networks. Bases
outlines were then imported into Google Earth to cross-check with
satellite images that the features are indeed volcanoes. To minimise
the number of edifices mis-identified as volcanoes, we also com-
pared our results with previous publications (e.g., Knittel and Oles,
1994; Sajona et al., 1997; Vogel et al., 2006), and geological, topo-
graphical, and geohazard maps from the Mines and Geosciences Bu-
reau, including the geologic map of the Philippines from Aurelio and
Pena (2002). The edifice base outlines do not include long-runout
lahar, pyroclastic flow, and debris avalanche deposits. In addition,
some volcanoes may continue underwater and their real edifice
bases may be on the seafloor. The following criteria was used for de-
fining volcano bases.

1. They have a closed circular or elliptical outlinewith positive relief for
stratovolcanoes and cones, whereasmaars and calderas showmostly
negative relief (Fig. 2A).

2. They are characterized by a break in slope, concave for cones and
convex for maars and calderas.

3. Volcanic edifices were interpreted based only on morphology.
For parasitic cones or overlapping edifices, each individual edifice
was drawn separately, but the spatial relationships with the
neighbouring volcanoes were noted for consideration of the
buttressing and gravity effects on the morphological classification
(Fig. 2A).

4. For edifices that regrew after collapse or erosion (Fig. 2B), we sep-
arately delineated the base of the younger and older edifices.

We also manually delineated summit craters formed by eruptions
and summit openings such as collapse scars and erosional amph-
itheatres. Collapse scars (referred to as volcanic landslide scars by
Bernard et al., 2020) are horseshoe-shaped and formed by rapid large-
scale collapse events, including debris avalanches and large landslides.
Erosional breaches are similar to scars, and are formed by long-lived,
small-scale fluvial processes (Karátson et al., 1999). These features can
overlap (e.g., breached summit craters).

3.2. Edifice morphometry

The volcano base outlines and the 30-m resolution DEM were the
input data for MORVOLC, an interactive data language (IDL)-based
code that generates morphometric parameters that describe the size
(height, width, and volume), plan shape (ellipticity and irregularity in-
dexes), and profile shape (height/basal width ratio, summitwidth/basal
width ratio, and slope) of each volcanic edifice (Grosse et al., 2012).
MORVOLC uses the volcano base outline to compute the basal area, av-
erage basal width (diameter of a circle with the equivalent area), and
major and minor basal axes. A 3D basal surface calculated from the ed-
ifice outline by inverse distance weighting (IDW) is then used to

http://philgis.org/


Fig. 2. SRTM 30 m DEM-derived slope map showing examples of single and overlapping
volcano edifice bases. Volcano bases are drawn as black polygons.
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estimate edifice height and volume. 50-m elevation contours and a
summit region, where the edifice starts flattening out, are generated
from the DEM. For each closed elevation contour, two dimensionless in-
dexes are computed that give an estimate of the elongation (ellipticity
index) and complexity (irregularity index) (Grosse et al., 2012). The
DEM-derived slope map is used to compute average slope values for
the whole edifice, the summit region and the edifice flank (excluding
the summit region), the latter also separated into lower andmain flanks
(below and above the lowermost closed elevation contour, respec-
tively). Small closed contours produced by topographic highs or lows
are counted as secondary peaks or depressions, which can estimate ter-
rain roughness and are related to the number of secondary vents and
erosional features (Grosse et al., 2012).

For edifices with delineated summit craters, the crater is either
contained within the summit region or is used directly as the summit
region if there is no significant slope decrease or no closed contour
below the crater outline. In the latter case, we used the crater width
rather than the summit width for calculating the summit width/basal
width ratio. MORVOLC also computes additional crater-related parame-
ters: area, averagewidth,major axis length and azimuth, depth, volume
of the depression, ellipticity index, irregularity index, and average slope
within the crater. Further descriptions of the parameters used are given
in the supplementary data on Philippine volcanoes morphometry and
for further details on MORVOLC, see Grosse et al. (2012, 2014).

3.3. Morphometric classification

MORVOLC generates a multidimensional morphometric dataset
with continuous and correlated variables; therefore, we used principal
component analysis (PCA) and clustering analysis to classify the mor-
phometry of the volcanoes. PCA is a preprocessing step before
4

performing clustering analysis used to reduce the dimensions of the
data to a few uncorrelated continuous variables or principal compo-
nents (PC) containing a large part of the total variance of the dataset
(e.g., Jolliffe, 2002). We selected 15 morphometric variables with data
for all volcanic edifices to perform the PCA (Table 1).

Volcano edifices were then classified based on their morphometry
by performing hierarchical clustering with the first four PC (HCPC).
Clustering is an unsupervised method for partitioning a dataset into
groups or clusters. This method requires a definition for distance and
an agglomeration criterion (Köhn andHubert, 2015).We used theMan-
hattan distance and Ward's criterion, which decomposes the total vari-
ance into between- and within-group variance. This method consists of
aggregating two clusters such that the growth of within-group variance
is minimised, implying homogeneity within a cluster. The hierarchy is
represented by a dendrogram indexed by the gain of within-group
variance.

To evaluate goodness of clustering, we examined the within-cluster
variation. To measure how well separated a cluster is from other clus-
ters, we used distances between cluster centres and the pairwise mini-
mum distances between objects in different clusters. Silhouette plots
showhowwell an observation is clustered, and allow estimating the av-
erage distance between clusters (Jolliffe, 2002).
3.4. Spatial distribution and alignment of volcanic centres in volcanic fields

The spatial distribution and alignment of volcanic centres within
volcanic fields and the general shape of the volcanic field itself provide
important constraints for understanding controls on volcano evolution
(Condit and Connor, 1996; Le Corvec et al., 2013). We used the Matlab
Geological Image Analysis Software (GIAS) code developed by Beggan
and Hamilton (2010) to evaluate the spatial distribution of the volcanic
centres in each volcanic field, compared to that expected for a Poisson
nearest-neighbour (PNN) statistical model (Clark and Evans, 1954).
The code determines the mean nearest neighbour distances for the ob-
served (R0) and expected (Re) distribution, and obtains the population-
dependent R0 and Re (Baloga et al., 2007). The population density is cal-
culated using a convex hull generated by connecting the outermost
points of the population (Hamilton et al., 2010; Le Corvec et al., 2013)
divided by the number of volcanoes per volcanic field. R values, which
compare the spatial distribution of the natural system with the Poisson
model, and c values, which assess the significance of the comparison, are
plotted with 2σ confidence intervals to overcome the sample-depen-
dent bias and properly assess the suitability of the PNN analysis. The
shape of volcanic fields, from sub-circular to low eccentricity ellipses,
can provide important information on the nature and behaviour of the
source and the magma plumbing system (Condit and Connor, 1996;
Le Corvec et al., 2013). Shapes are determined by various processes, in-
cluding the duration of volcanic activity and the geometry of the source
(Le Corvec et al., 2013). The GIAS code describes the shapes of volcanic
fields by fitting aminimum-area ellipse around the volcanic centres and
defining the axial ratio of the ellipse, and volcanic field orientation by
the azimuth of the major axis of the ellipse.

A Matlab three-point alignment code was then used to identify
groups of at least three volcanic centres that form a straight line within
certain length and thickness tolerances for the lineament (Le Corvec et
al., 2013). To take into account the fact that volcanic fields often cover
a large area but have a small mean distance between volcanic centres
due to, for example, magma propagating through new fractures or re-
activated pre-existing structures (Le Corvec et al., 2013; Wadge and
Cross, 1988; Connor et al., 1992; Baloga et al., 2007; Bleacher et al.,
2009), the code uses density-definedmaximumdistances between vol-
canic centres for the length tolerance. The code then generates a list of
alignment azimuths of lines formed by at least three volcanoes, for
each volcanic field. These azimuths are then plotted on a rose diagram
to visualise the preferred alignments.



Table 1
Morphometric parameters used for the principal component (PC) and clustering analyses. The percentages correspond to the amount of variation explained by each of the principal
components. Bold values indicate the largest contribution of each variable to the first four PCs. Blue is a positive contribution, red is a negative contribution, with darker colours indicating
larger contributions.
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3.5. Geochemistry

To obtain a reasonably complete database of geochemical analyses
for Philippine volcanoes, we used the GEOROC database (http://
georoc.mpch-mainz.gwdg.de/georoc/Start.asp). The database was que-
ried by longitude and latitude, and all of the relevant volcanic whole-
rock analyses were selected for download. The analyses were matched
to volcanoes in our database using the sample descriptions and location
maps in the original articles. Only analyses where a complete set of
major elements was available were considered. This yielded a mean of
8.2 analyses per volcano from a total of 76 volcanoes. A full list of refer-
ences can be found in the supplementary material. For consistency, all
FeO and Fe2O3 analyses were converted to the equivalent as Fe2O3

only, and major elements were normalised to 100%.
4. Results

4.1. Database of Philippine volcanoes

This work presents a database consisting of the volcano edifice out-
lines and their morphometric parameters and descriptions (supple-
mentary data). The data for selected volcanoes is listed in Table 2, and
the 731 edifice outlines are shown in Fig. 1. Volcanoes are organized
geographically into nine volcanic regions and eight volcanic fields,
with high densities of small cones (≲7 km3 volume) with or without
larger volcanoes (Fig. 1). The volcanoes delineated in this work were
cross-checked with the existing list of volcanoes of the Philippine
Institute of Volcanology and Seismology (2008), but also includes
many that are not on that list, particularly smaller edifices. Although
we have endeavoured to identify all volcanoes in a systematic fashion,
we acknowledge that some volcanoes may have been left out and
some entries may have been misidentified. Hence, we anticipate that
the current database will improve with time.
5

4.2. Morphometric classification

The volcanic edifices were classified using hierarchical classification
based on the first four principal components obtained from 15 of the
morphometric parameters generated by MORVOLC (Table 1). The se-
lected parameters describe the base, summit, and overall size, plan
(irregularity and ellipticity or elongation) and profile (height/basal
width ratio and mean slope) shapes, number of secondary peaks, and
truncation (summit width/basal width ratio). For volcanoes with delin-
eated craters, we use the width of the crater as the summit width.

The size parameters are strongly positively correlated (blue circles in
Fig. 3A) with each other and with edifice irregularity and number of
peaks, and weakly positively correlated with elongation. Edifice size is
weakly negatively correlated (red circles) with truncation and mean
slope. Elongation, truncation and mean slope are weakly correlated
with each other (Fig. 3A).

We use the first four PC based on the Kaiser-Guttman rule, which re-
tains PCwith eigenvalues greater than 1. ∼87% of the information or var-
iance contained in the data are retained by the first four PC (Table 1).
The positively correlated size and plan-shape irregularity variables con-
tribute mostly to PC1, the height/basal width ratio and mean slope (i.e.,
steepness) contribute mostly to PC2, truncation contributes almost
equally to PC3 and PC4, and elongation contributes mostly to PC4
(Table 1; Fig. 3A).

Based on the morphometric information captured by the four PCs,
hierarchical clustering of 711 volcano edifices (excluding 20 small edi-
fices with delineated craters that lack closed elevation contours, and
which thus lack values for their ellipticity and irregularity indices) was
implemented to classify Philippine volcanoes into groups of self-similar
edifices. The hierarchical clustering produced four clusters. The edifices
in clusters 1 (373 edifices) and 2 (258 edifices) are small (low PC1
values; Fig. 3C). Those in cluster 1 have low PC2 values and hence are
classified as small flat cones, whereas those in cluster 2 have high PC2
values and are classified as small steep cones (Fig. 3C). Cluster 3
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Fig. 3. Results of principal component analysis and hierarchical classification by principal components. A Correlation plot for the 15morphometric parameters used. Colour intensity and
the size of the circles are proportional to the correlation coefficient ranging from−1 to+1. B Silhouette plot showing the performance of the clustering—a higher average silhouettewidth
is better, and negative silhouettes represent volcanoes that may not be in the correct cluster. Nj is the number of edifices and Sj is the silhouette width in each cluster, j. C Hierarchical
clustering based on the first four PC, showing PC1 (size, irregularity, and number of peaks) versus PC2 (steepness: height/basal width ratio and slope), PC3 (irregularity, truncation,
and size of summit area), and PC4 (elongation and truncation). Clusters 1, 2, 3, and 4 are interpreted to be small flat cones, small steep cones, large cones, and massifs, respectively.
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contains 67 edificeswith intermediate PC1 values (Fig. 3C), and are clas-
sified as large cones. Cluster 4 consists of 13 edifices with high PC1
values (Fig. 3C) and are classified asmassifs. There is no clear distinction
between the clusters using PC3 and PC4 (Fig. 3C), although the large
cones tend to have lower PC4 values than the massifs. Table 2 lists the
general morphometric characteristics of each cluster.

Small flat cones have amean height of 125m (range=16–721m), a
mean volume of 0.2 km3 (<6.2 km3), and a mean slope of 13° (3°–21°).
They are oftendistributedacross theslopes of larger volcanoes, including
Makaturing, Maramag, and Ragang, and can be found in the Basilan, Upi,
Zamboanga, and Lanao volcanic fields. Small steep cones have a mean
height of 260 m (53–971 m), a mean volume of 0.4 km3 (<9 km3), and
a mean slope of 22° (14°–37°). They can be found in volcanic fields of
Lanao, Macolod, and Zamboanga, and on the slopes of large volcanoes
such as Labo, Makaturing, Maramag, Parker, Camiguin de Babuyanes,
Mandalagan, and those on Camiguin Island in Mindanao. Large cones
have a mean height of 842 m (59–2314 m), a mean volume of 29 km3
7

(0.15–178 km3), and a mean slope of 15° (3°–28°). In this group are
many of the more well-known active and potentially active volcanoes
(e.g.,Mayon, Iriga, Kanlaon,Matutum, andApo). Themassifs are large, ir-
regular, and have more peaks than most of the smaller edifices, with a
mean height of 1533 m (1012–2175 m), a mean volume of 267 km3

(76–675 km3), and a mean slope of 15° (11°–22°). Massifs include
Cuernos de Negros, Balatukan,Malindang, Kilatungan, Kitanglad, Parker,
andRagang. Large cones andmassifs aremostly found inWestern Luzon,
Bicol, Eastern Visayas, Negros, and North and South Mindanao.

Average inter- and intra-cluster distances and the Dunn-index sug-
gest that the clusters are well separated from each other. Using the dis-
tance of each point in a cluster to neighbouring clusters, most volcanoes
in clusters 1 and 2 are well separated from the other clusters (Fig. 3B).
Negative values for some volcanoes in clusters 3 and 4 suggest a lower
separability and possible misclassification.

Since cone morphology can be influenced by substrate topogra-
phy (Tibaldi, 1995; Corazzato and Tibaldi, 2006), we considered
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Fig. 4. Distribution and classification of volcano edifices in Basilan, Lanao, Makaturing, Upi, Labo, Macolod, Maramag, and Zamboanga volcanic fields (left). The number of volcanoes
(NVolcanoes) and alignments (NAlignments) formed by at least three volcanic centres are given. Upper rose diagrams show the volcano base elongation azimuths; lower rose diagrams show
preferred alignment directions for volcanic fields with more than 10 alignments; blue half ellipses and blue lines show the ellipticity and the long axis directions of the volcanic fields;
and the red lines are the orientation of the main faults in the fields: in Basilan, this represents the Sulu Trench as drawn by Aurelio (2000) and Aurelio and Pena (2002), in Lanao, these
are the ∼80° striking normal faults that can be seen in the SRTM DEM , and in Macolod, these are the north–south strike–slip faults and ~70° rift faults (Vogel et al., 2006; Lagmay and
Valdivia, 2006).
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the effects of buttressing on parasitic and overlapping edifices. Par-
asitic cones are either small steep or small flat cones, and tend to
be slightly steeper than non-parasitic cones, although there is a
large overlap in their mean slopes. There is no difference in the
9

values of the other morphometric parameters between parasitic
and non-parasitic cones. Some large cones and massifs overlap,
but buttressing does not seem to affect their morphometric param-
eters significantly.



Fig. 4 (continued).
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4.3. Spatial distribution and alignment of volcanoes

Table 3 lists the results of applying Poisson Nearest-Neighbour anal-
ysis to the eight volcanic fields of the Philippines. Basilan, Lanao,
Macolod, Makaturing, Maramag, and Zamboanga volcanic fields have c
values outside the ±2σ significance level and R values less than −2σ,
which means they are clustered relative to a Poisson distribution. Labo
10
and Upi volcanic fields have c values outside the ±2σ significance
level and R greater than +2σ, which means they are dispersed.

Considering the volcano density and the relationships established
using the global database of monogenetic volcanic fields by Le Corvec
et al. (2013), the maximum distances needed for the generation of
lineaments for the volcanic fields are 3.5–9.0 km (Table 3). We used a
width tolerance of 100 m for all the volcanic fields, considering the



Fig. 5. Total alkali–silica plot after Le Maitre et al. (2005)
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uncertainties due to the locations of the volcanic centres relative to the
original vents and the width of dike swarms and zones. Additional un-
certainty comes from the lack of bathymetric data, for example, in Basi-
lan, where submarine volcanoes that would reduce the distance
between neighbouring volcanoes are excluded. This analysis was run
for the volcanicfields but not for volcanic regions because larger edifices
are fewer and farther apart.

A three-point MATLAB script (Le Corvec, personal communication)
was used to automatically extract the different alignments of the volca-
noes within volcanic fields and plot the direction of the alignments on a
rose diagram (Fig. 4). Fig. 4 also shows half ellipse shapes of the volcanic
fields, the directions of the long axis of the ellipse, and the directions of
some of the faults in Basilan, Lanao, andMacolod volcanic fields that can
be seen in the SRTM DEM or have been noted in previous studies
(Aurelio, 2000; Aurelio and Pena, 2002; Vogel et al., 2006; Lagmay and
Valdivia, 2006). Theminimum-area ellipses that fit the fields aremostly
elongated,with short-to-long axis ratios of 0.28–0.78 (Table 3).Weonly
analysed the spatial distribution of the four fields with more than 10
alignments. Basilan and Macolod volcanic fields have one preferred
alignment orientation, whereas Lanao and Maramag volcanic fields
have two. Basilan, Macolod, and Lanao have preferred alignment orien-
tations that coincide with the directions of their dominant tectonic
structures (Fig. 4). All four volcanic fieldswithmore than 10 alignments
have preferred alignment directions that also coincidewith the orienta-
tion of the shape of thefield (Table 3; Fig. 4). The elongation azimuths of
the edifice bases are roughly parallel to the dominant alignment direc-
tion in most of the volcanic fields, although the variation is high (Fig. 4).

4.4. Geochemistry

In general, Philippine volcanoes have compositions that form a sin-
gle, broad, continuous trend from basalt to rhyolite (Fig. 5); however,
by considering each morphometric class separately some patterns do
emerge. Individual small flat cones have restricted compositions;
these form a bimodal distribution with most volcanoes having either
basaltic or dacitic–rhyolitic compositions (Fig. 6A, E). Individual small
steep cones tend to have a larger range in SiO2 (Fig. 6F), suggesting
that they have hadmultiple eruptions. Small steep cones are mostly ba-
saltic and andesitic (Fig. 6B),with very few silicic volcanoes. Large cones
are mostly basaltic-andesite to andesite, with some dacitic eruptions
(Fig. 6C). Both as a group and individually, massifs have a large range
of compositions, although only a few of the samples are dacitic or rhyo-
litic (Fig. 6D, H). Aswell as having a large range of SiO2 contents, massifs
show more variability in other elements (e.g., Na2O + K2O; Fig. 5).
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5. Discussion

5.1. Spatial distribution of the different volcano classes

The distribution of the four volcano classes is shown in Fig. 7, Table 2,
and the Supplementary Data. Detailed maps with the distribution of
small volcanoes in the volcanic fields are shown in Fig. 4. Large cones
andmassifs are foundmostly in the northern and central part of Minda-
nao up to Negros, and in East Philippines and West Luzon (Fig. 7). The
locations of these volcanoes coincide with regions of thicker crust
modelled by Parcutela et al. (2020), who related the depth of the
Moho to Bouguer gravity anomalies generated from the EGM2008
global model. The middle of Luzon and Bicol–Negros–Panay–Central
Mindanaohas crust 25–37.5 km thick, compared to the rest of the archi-
pelago that is characterized by crust ∼13–25 km thick (Parcutela et al.,
2020). Large cones and massifs in the central part of Mindanao are
thought to be related to the collision betweenwestern and easternMin-
danao at ∼5Ma (Pubellier et al., 1991; Castillo et al., 1999) and between
the Zamboanga–Sulu Peninsula (on thewest ofMindanao) and the cen-
tral part of Mindanao (Yumul et al., 2008). There is no correlation be-
tween the locations of small cones, whether steep or flat, and the
location of thicker crust.

The distribution of the large cones and massifs suggests that the
thickness of the crust may influence the evolution of arc volcanoes.
For example, Carr (1984) and Farner and Lee (2017) found a relation-
ship between crustal thickness and the chemistry of themagmaerupted
globally at arc volcanoes and suggested that the thickness of the crust
controlled the magma evolution through processes such as fractional
crystallisation and crustal assimilation. Thicker crust makes magma
more likely to stall during ascent, forming long-lived magma chambers
that focus volcanic activity (Karlstrom et al., 2009; Pansino and Taisne,
2019), which could potentially lead to larger edifices. The longer transit
times for the magma also lead to more evolved compositions, which
would also lead to steeper and taller edifices (Farner and Lee, 2017).

5.2. Evolutionary trends

Fig. 8 shows plots of selectedmorphometric parameters for all volca-
noes, which, combined with the geochemistry (Fig. 9), suggest possible
evolutionary trends. The single trend on the total alkali–silica plot (Fig.
5) suggests that the volcanoes share a similar source and that a similar
set of magmatic processes operates at each.

Volcanoes initially develop as small cones, either flat or steep; the
steepness might relate to the eruptive style. The bimodal distribution
and restricted individual compositions of the small flat cones is consis-
tentwith them beingmonogenetic: either basaltic scoria cones or silicic
domes (Fig. 6E). Many of these volcanoes have previously been identi-
fied as monogenetic, including scoria cones and silicic domes in the
Macolod Volcanic Field (Fig. 1; e.g., Förster et al., 1990; Defant et al.,
1991; Knittel and Oles, 1994; Vogel et al., 2006), silicic domes in the
Central Luzon back arc (Western Luzon Volcanic Region; Fig. 1; e.g.,
Yumul et al., 2000a), scoria cones on Taal (e.g., Miklius et al., 1991),
and monogenetic parasitic cones on Mount Mariveles (e.g., Defant
et al., 1991), although a few small flat cones in the Macolod Corridor
may be polygenetic (e.g., Knittel and Oles, 1994). Although scoria
cones and silicic domes have steep flanks, the flat tops of domes and
the relatively large craters of scoria cones lead to large truncation values
and low mean slope values for the entire edifices.

Some of the small steep cones also have restricted compositions (Fig.
6F), and some have also previously been identified as monogenetic, in-
cluding silicic domes and mafic scoria cones in the Macolod Corridor
(e.g., Knittel and Oles, 1994; Vogel et al., 2006) and silicic domes in
Irosin Caldera (e.g., McDermott et al., 2005); however, many small
steep cones have a larger range of compositions, suggesting multiple
eruptions and a polygenetic evolution (Fig. 6F). Small steep cones that
have previously been shown to be polygenetic include Guinsiliban,



Fig. 6.A–DProbability density plots for the SiO2 content of rocks from Philippine volcanoes, separated bymorphometric class and inverselyweighted by the number of analyses from each
volcano. E–H SiO2 content of analyses from each Philippine volcano with available geochemical data, separated bymorphometric class and sorted bymedian SiO2 content. The ID number
of each volcano, as plotted on the y axis, can be found in the Supplementary Data. Numbers to the right of the data are the number of analyses in the database for each volcano.
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Uhay, and Hibok-hibok on Camiguin (e.g., Castillo et al., 1999), pre-cal-
dera cones outside Irosin caldera (e.g., Delfin et al., 1993; McDermott et
al., 2005), Basco Island in Batanes (e.g., Defant et al., 1990; Sajona et al.,
2000), and some cones in theMacolod Corridor (e.g., Defant et al., 1991;
Miklius et al., 1991; Knittel and Oles, 1994).
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Some of the polygenetic small steep cones may grow steadily verti-
cally and laterally into large cones, and some eventually develop into
massifs. The massifs are the largest in terms of volume and basal
areas, but reach heights similar to large cones, suggesting that once vol-
canoes reach a mature threshold they continue growing laterally rather



Fig. 7. Philippine volcanoes classified using the hierarchical clustering based on principal components. Crustal thickness is taken from Parcutela et al. (2020). The distribution and
classification of small edifices in each volcanic field is shown in Fig. 4.
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Fig. 8. X–Y scatter plots for different morphometric variables. Regression lines are fitted to the four classes in the volume versus height plot (A).
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Fig. 9. A Mean SiO2 contents of the 76 volcanoes for which geochemistry data exists, as a
function of their morphometric evolution. Trends as calculated in the regression lines
fitted to the four classes in the volume versus height plot in Fig. 8. B Mean SiO2 content
versus principal component 2, which is related to steepness (height/basal width ratio
and mean slope).

Fig. 10. Cross sections passing through the summit of four representative volcanoes from
the fourmorphometric classes. TheMassif profile is presented at half the scale of the other
classes.
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than vertically (Fig. 8 A–C) (Grosse et al., 2009). Ramalho et al. (2013)
suggested that during periods of high magmatic flux, constructional
processes dominate the edifice building stages. In order to keep the vol-
cano stable during its growth stages, lateral growth will tend to domi-
nate with increasing volume, as suggested by decreasing height/basal
width ratios from the smaller volcanoes towards the larger ones (Fig.
8C and Fig. 10). Massifs, for example, do not develop a single restricted
summit, but rather have extensive flat plateaus with multiple vents.
Large cones and massifs tend to increase in irregularity as they evolve
but their ellipticity does not change significantly (Fig. 8E–F).
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While there are few andesitic small flat cones, there aremany andes-
itic small steep cones, and the majority of the large cones are andesitic
(Fig. 6). The proportion of basalts decreases from small to large cones,
and this trend suggests that edifice growth is accompanied by an evolu-
tion in the averagemagma composition, which in turn suggests that the
increased load of larger edifices leads to greater degrees of magma dif-
ferentiation. Numerical modelling shows that the load of an edifice
can cause dykes to stall before reaching the surface, allowing magma
to evolve by fractional crystallisation or crustal assimilation (Pinel and
Jaupart, 2000). In addition, the density threshold belowwhich magmas
become buoyant enough to continue ascending is lower for larger loads
(Pinel and Jaupart, 2000). This effect has been seen at individual volca-
noes, where large edifices have lead to more silicic magmas (e.g.,
Longpré et al., 2009; Fabbro et al., 2013), and edifice collapses have
been followed by more mafic magma reaching the surface (e.g., Hora
et al., 2007; Manconi et al., 2009); here we suggest that this process
can be seen more generally in the change in composition of Philippine
volcanoes as they evolve from small to large cones. Despite this, massifs
are dominated by basaltic and andesitic magmas (Fig. 6). A possible ex-
planation for the lack of silicic eruptions from massifs is that silicic
magma is more explosive; therefore, any volcano that starts erupting
dacite or rhyolite tends to have a destructive explosive eruption,
forming a caldera rather than continuing to evolve into a massif. It is
also possible that the more distributed eruptions from massifs lead to
a more distributed load, allowing less-evolved magma to reach the
surface.

During the active lifetime of a volcano, its growth rate is likely to be
greater than its erosion or destruction rate; however, during inactivity
and quiescence, destructive processes dominated by mass wasting or
fluvial erosion gradually take over, reshaping the landscape. Erosion
and destructionmay become apparent, resulting in amore irregular ed-
ifice with uneven slopes, more secondary peaks, reduced height, and
lateral transport of material down the flanks. Larger volcanoes tend to
bemore irregular as they evolve, as a result of either degradation or lat-
eral growth (Fig. 8F). This suggests that although climate and volcano-
induced climate could potentially play a role in the edifice development,
volcano age correlated with edifice height must also be considered.

Edifice steepness seems to be related to its average magma compo-
sition (Fig. 9B), although this may be complicated by geochemical
trends or variations at individual volcanoes. As the magma evolves
from basalt to andesite, its viscosity and yield strength increases (e.g.,
Giordano et al., 2008), and this is reflected in steeper slopes; however,
as themagma evolves from andesite to dacite and rhyolite, there is a de-
crease in the steepness of the edifices that could be due to a change in
eruptive style. Silicic magmas tend to be more explosive, and explosive
eruptions will tend to produce less steep edifices than effusive erup-
tions. Explosive eruptions are more destructive, potentially lowering
the edifice height, and they often generate widespread tephra fall and
long runout pyroclastic flow deposits, potentially increasing the basal
area. In addition, pyroclastic deposits aremore easily eroded. These pro-
cesses would decrease the height/basal width ratio and the average
slope of the edifice and could explain the dominance of andesitic
magmas in large cones in the Philippines. The increase in steepness
from basaltic small cones to andesitic large cones would concentrate
the load of the edifice, which would increase the degree of evolution
of themagma, leading to a positive feedback. If themagma composition
becomes more silicic than andesite, the decrease in steepness would
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lead to more distributed loads, which would reduce the effect of the
load on the evolution of the magma.

5.3. Magma propagation and spatial distribution of volcanoes in the volca-
nic fields

The clustered distribution of edifices in the Basilan, Lanao, Macolod,
Makaturing, Maramag, and Zamboanga volcanic fields may be ex-
plained by individual batches of magma ascending into the crust, with
each batch producing a cluster of volcanoes (Le Corvec et al., 2013).
Each batch may have a discrete source, or the source may continuously
producemelt that ascends as individual batches. However, it is not clear
whether pre-existing crustal structures or crustal heterogeneities influ-
ence the development of mid-crustal sills, which can also serve as sec-
ondary sources feeding several eruptions at the surface (Kavanagh et
al., 2006; Valentine and Krogh, 2006; Macceferri and Bonafede, 2011).
If volcanic centre alignments coincidewith the long axis of the shape el-
lipse, as is the case in Basilan, Lanao, andMaramag volcanic fields, and if
the dikes ascended vertically, then the shape of the field at the surface
would approximately represent the shape of the source in the mantle.
However, in the case of the Philippine volcanic fields, there is no geo-
physical data to support this claim.

Alignments of volcanoes in a volcanic field may be influenced by the
stress conditions and the pre-existing structures of the crust and hence
can reflectmagma propagation and ascent paths (e.g., Nakamura, 1977;
Connor, 1987; Connor et al., 1992; Le Corvec et al., 2013; Paguican and
Bursik, 2016). The preferred alignments may represent the stress field
at the time of intrusion, if the dykes propagated into newly formed
cracks oriented perpendicular to the direction of the least principal tec-
tonic stress, σ3 (Delaney and Pollard, 1981), or they could reflect pre-
existing crustal-scale faults (Valentine and Krogh, 2006). Recent work
byGómez-Vasconcelos et al. (2020) has shown thatmonogenetic volca-
noes in the Michoácan-Guanajuato volcanic field in Mexico are aligned
along an active fault system. However, vent alignment analysis must be
consideredwith care because of the inherent uncertainty in themethod
and the selection of points (e.g., Tibaldi, 1995).

Basilan volcanic field, in a compressional tectonic environment
(Heidbach et al., 2008), has 93% of its volcanoes preferentially aligned
roughly east–west, with some aligned ∼60°-70°, parallel to the Sulu
trench (Fig. 4, Table 3). We attribute these alignments tomagma ascent
along pre-existing crustal structures and reactivated faults (Sibson,
1990; Galland et al., 2003).

In the strike-slip environments of the Lanao and Maramag volcanic
fields (Fig. 4), one or two preferred alignments along the tectonic
features is possible if magma ascends via extension fractures and
strike-slip faults, which tend to be vertical. The other preferred orienta-
tion may result from rotation of the stress field producing en-echelon
structures (Delaney and Pollard, 1981) or the development of flower
structures in releasing and restraining bends along strike-slip faults
(Sylvester, 1988). This is seen in the growth of Labo and Caayunan
volcanoes (Pasquarè and Tibaldi, 2003), where dome shapes and align-
ments are parallel to the regional transcurrent structure; however,
there was a period during its growth where the stress from the
magma chamber dominated over the regional stress and domes were
aligned radially.

In theMacolod Volcanic Field, the alignments are likely controlled by
the associated normal fault system and strike slip faulting from the lo-
calized extension described by Galgana et al. (2007). The dominant
northeast–southwest alignment of the extensional Macolod Volcanic
Field is attributed to the tendency of rift systems to bemechanically seg-
mented along strike (Ebinger et al., 1999). In this case, the kinematic
coherence is probably achieved when ascending magma took advan-
tage of cross faults that are at high angle to the rift orientation (Le Gall
et al., 2000) that act as transfer zones. These areminor northeast–south-
west strike-slip or oblique faults (Förster et al., 1990).
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The non-clustered distribution of volcanoes in the Labo and Upi vol-
canic fields can be explained by a lowmagmaflux or production, similar
to the case in the Auckland Volcanic Field (Le Corvec et al., 2013). In this
case, the source at depth produces only enough magma for a single
eruption.

6. Conclusions

Philippine volcanoes can be classified morphometrically as small
flat cones, small steep cones, large cones, and massifs, based on their
size, irregularity, number of peaks, and steepness (height/basal
width ratio and mean slope), and to a lesser extent on truncation
and elongation. Small flat cones are mostly monogenetic, with each
volcano having a restricted chemical range. Small steep cones may
be monogenetic or polygenetic, and may evolve into large cones,
some of which may further grow laterally into massifs. The largest
volcanoes, including both large cones and massifs, are in Negros,
North and South Mindanao, East Philippines, and West Luzon. Their
location coincides with the thickened crust of the Bicol–Negros–
Panay, Central Mindanao, and Central Luzon regions, suggesting
that the thickness of the crust may have influenced the evolution
of magma underneath these volcanoes.

The distribution and alignment of volcanoes in the eight volcanic
fields analysed show different controls related to the dominant stress
conditions and presence of pre-existing faults. The trend towards
more silicic compositions from small to large cones may be attributed
to larger edifice loads preventingmafic dykes from reaching the surface,
and this in turn may drive magma evolution. More evolved and explo-
sive magmas may cause more silicic volcanoes to be less steep than
andesitic ones.
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