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Figure 1: Rabaul Caldera, taken from the Rabaul Volcano Observatory (Figure 2), looking southeast. The labels are coloured based on their last eruption (Figure 3). Vulcan, Tavurvur, Sulphur Creek, and Rabalanakaia (hidden
behind Palangiangia in this photo) have all been active in the last ~250 years. Kabiu, Palangiangia, and Turagunan have all been active in the last 4.2 ky, but with the possible exception of a lava flow from Turagunan, have
not erupted since the Rabaul Pyroclastics eruption at ~1.4 ka.

1. Introduction
Many calderas show cycles of large, explosive eruptions interspersed
with minor activity. Despite improvements in our ability to forecasting
the onset of eruptions, it is still difficult to forecast their sizes. To
address this, we focused on Rabaul, Papua New Guinea, where at least
4 large ignimbrites have been erupted over the last 20ky alongside
numerous smaller eruptions. Our data spans a complete caldera cycle,
from the penultimate (~10.5-ka Vunabugbug Ignimbrite) to the most
recent (~1.4-ka Rabaul Pyroclastics) caldera-forming eruptions.

2. The last complete caldera cycle at Rabaul
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Figure 2: Geological map of the Rabaul area, after Nairn et al. (1989).
The line A–A’ shows the location of the cross sections in Figure 6.

Rabaul consists of several overlapping calderas, with several domin-
antly mafic stratovolcanoes lying to the north and east (Figure 1). After
the penultimate caldera-forming eruption (Vunabugbug Ignimbrite),
there was a period with little recorded volcanic activity; either there
were few eruptions or the eruptions were too small to deposit material
outside of the caldera. Activity picked up at ~4.4 ka with Talili
phases 1–2 (Figure 3), explosive dacitic eruptions from vents within
the caldera. This culminated in the ~4.1 ka Memorial Ignimbrite,
a dominantly dacitic eruption that also included andesitic scoria.
Immediately above the Memorial Ignimbrite lie three mafic scoria
falls (Talili Phase 3) that were erupted from the mafic stratovolcanoes
outside of the caldera. Dacitic activity then recommenced from vents
within the caldera (Talili phases 4–7), culminating in the caldera-
forming Rabaul Pyroclastics. Post-caldera activity has consisted of the
eruption of dacites and hybrid andesites from multiple vents within
the caldera.

Vunabugbug Ignimbrite
(10,500 BPc)

Plinian fall deposit

Pyroc�astic flow deposit

Talwat

Raluan Scoria Fall

Raluan Ignimbrite (6,900 BPc)

Talili Phase 1

Ash and scoria

Fine, white rhyolitic ash flow 
From Tavui

Laminated ash, pumice �apili,
and accretionary �apili

Well-sorted b�ack scoria

1 m

4380 ± 80 BP, 4430 ± 110 BPa
 

Talili Phase 2

Memorial Ignimbrite

JWM Scoria

Intervening Scoria

Namanu�a Scoria

Talili Phase 3

Talili Phase 4

Talili Phase 5

Talili Phase 6

Laminated and unstratified fine 
ash and accretionary �apili

Several unconformities

Pyroc�astic flow deposit

Surge deposits, with minor 
andesitic scoria

Fine ash, occasional scoria, 
pumice, and accretionary �apili

Fine, �aminated ash and 
pumice �apili

Laminated and bedded
fine ash

4100 ± 60, 4120 ± 40 BPd

4300 ± 70 BPd 

3380 ± 60 BPd

2450 ± 60 BPd

2180 ± 70 BPd

Talili Phase 7

Rabaul Pyroclastics

Matupit Pumice

Dawapia

Sulphur Creek

Rabalanakaia

Tavurvur Laminated Sequence 
(1767 CE?a)

Sulphur Creek (~1850 CEa)

Tavurvur & Vulcan (1878 CE)

Tavurvur & Vulcan
(1937–1943 CE)

Tavurvur & Vulcan (1994 CE)

Tavurvur (2014 CE)
Tavurvur (2006 CE)

Laminated fine ash

Normal ignimbrite

Ground �ayer

Fines-depleted ignimbrite
Ground �ayer

Surge deposits

Plinian pumice fall deposit

Reworked pumice raft deposits

1810 ± 70 BPa

1380 ± 34 BPb

670 ± 80, 850 ± 70 BPa

Whole-rock geochemistry
Thin section
Grainmount

This study
Previous study

Pumice
Ash
Stratified ash

Scoria
Lithics

Lava

Accretionary �apilli
Shells and coral
Soil

Figure 3: Composite stratigraphy of the Rabaul area since the
Vunabugbug Ignimbrite, modified from Nairn et al. (1989) and McKee
and Fabbro (2018). Ages in italics are 14C ages; brown ages are from soil,
grey are from charcoal, and blue are from shells and coral. aNairn et
al. (1989), bMcKee et al. (2015), cMcKee and Duncan (2016), dMcKee and
Fabbro (2018).

3. Fractional crystallisation or magma mixing

0.6

0.7

0.8

0.9

1.0

1.1

1.2

50 55 60 65 70
SiO2 (wt.%)

Ti
O

2 (
w

t.%
)

Fractional

Crystallisation

Mixing

This study
Previous studies

Ex
tr

a-
ca

ld
er

a 
ba

sa
lts

Intra-caldera dacites

and hybrid andesites

Intra-caldera dacites and

fractionated andesites

Figure 4: Whole-rock compositions of magmas from Rabaul. Includes
data from Heming and Carmichael (1973), Heming (1974), Nairn et al.
(1989), Patia (2004), Bouvet de Maisonneuve et al. (2015), McKee and
Fabbro (2018), and Fabbro et al. (2020).

Fractional crystallisation leads to curved trends on many Harker plots,
such as SiO2 vs TiO2, whereas Magma mixing produces straight lines
that can cut across these curves (Figure 4).
The post-Rabaul Pyroclastics eruptions fall on mixing trends, suggest-
ing they were formed by the mixing of basalt and dacite.
The Rabaul Pyroclastics (including andesitic enclaves and glass),
the pre-Rabaul Pyroclastics, Memorial Ignimbrite (including andesitic
scoria), and the pre-Memorial Ignimbrite magmas all lie on the
fractionation trend. This suggests that there was little mixing between
dacite and basalt, and any recharge magma was fractionated andesite.

4. Magma storage conditions
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Figure 5: Magma storage conditions through time. (a) Melt H2O content
calculated using the plagioclase–liquid hygrometer of Waters and
Lange (2015). (b) Oxygen fugacity calculated using the magnetite
oxybarometer of Arató andAudétat (2017). (c) Pressure and (d) temper-
ature calculated using the two-pyroxene, clinopyroxene–liquid, and
plagioclase–liquid thermobarometers of Putirka (2008). (e) Whole-
rock, groundmass, and matrix glass SiO2 contents.

5. The history of themagmatic plumbing system
across a complete caldera cycle

1. The Vunabugbug emptied the eruptible magma forming a caldera
2. The growth of the silicic Memorial Ignimbrite reservoir blocked
the rise of basalt, as there was too great a rheological and thermal
contrast. Once basalt fractionated to andesite, it could mix or
mingle (Figure 6a).

3. After the Memorial Ignimbrite, basalt could bypass the
sub-caldera reservoir leading to eruptions from extra-caldera
vents (Figure 6b).

4. The growth of the Rabaul Pyroclastics reservoir once again blocks
basalt from reaching the surface and the shallow plumbing
system (Figure 6c).

5. After the Rabaul Pyroclastics, basalt can enter the shallow system.
Basalt and dacite mix to form hybrid andesites (Figure 6d).
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Figure 6: The magmatic plumbing system of Rabaul (a) shortly before
the Memorial Ignimbrite, (b) shortly after the Memorial Ignimbrite,
(c) shortly before the Rabaul Pyroclastics, and (d) the present day
system. The shallow and deep low velocity zones are from the seismic
tomographic studies of Finlayson et al. (2003) and Bai and Greenhalgh
(2005). The histograms to the right of each cross section are the
number of depths calculated using two-pyroxene (solid line) and
clinopyroxene–liquid (dashed line) pairs. The location of the cross
sections is shown in Figure 2.
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